ねじれの位置についてわかっていただけたところで、今年の大阪大学の入試問題を見てみましょう。
これは実はとても興味深い問題なのです。X(旧ツイッター)でも問題に対する反応や考察が相次いで投稿され、トレンドにも入るほどの盛り上がりを見せました。
共通垂線を扱う問題はたびたび登場していたが…
もともと高校数学において、ねじれの位置にある2つの直線の「共通垂線」を扱う問題はたびたび登場していました。
「垂線」というのは、ある直線と直角で交わる直線のことを意味しており、さきほどの直方体であれば直線ABの垂線は直線AEや直線BFなどが挙げられます。直方体においては、交わっている2直線はお互いがお互いの垂線の関係になっています。この垂線の定義を踏まえれば、共通垂線とは、両方の直線に直行で交わる直線、つまりこの入試問題の定義と全く同じであることがわかるでしょう。
このように聞くと、おそらく多くの人が、「そんなに頻出な問題なら、話題にはならないのではないか」と思うことでしょう。しかしこの問題の肝は、「1つしかないこと」を証明する部分にあるのです。つまり、この問題で存在すると言われている直線について受験生はみんな知っているが、ほかにこのような直線があるかどうかは議論されてこなかったのです。
有名な単元でありながら、多くの受験生を悩ませる「盲点を突く」ような問題が出されたことに、僕は感動すら覚えました。
この「ねじれの位置」の考え方は、世の中のあらゆる場所にあります。その最たる例が、「高架駅」です。高架駅とは、プラットホームや改札をはじめとした駅の設備が高架の構造物上に存在する駅のことであり、代表的なものだとモノレールの停車駅などが挙げられるでしょう。
無料会員登録はこちら
ログインはこちら