これを、数学用語を用いると、
と表すことができます。ここでいう「不能」とは「解を求めることができない(存在しない)」という意味であり、「不定」とは「解が1つに定まらない」という意味です。
どちらにせよ解は存在しないため、「答えなし」「エラー」という表記が正しいのですが、厳密にいうと「0÷0」と「3÷0」の答えは違うものなのです。
高校の「数学Ⅲ」で学ぶ「関数の極限」
さて、ここまで「18÷0」という具体例を挙げながら、「数字を0で割る」ことの定義について説明しました。しかし実は、この問題を理系の高校生や大学生に聞くと、「答えは∞(無限大)である」と答えられることがあるのです。
現在の学習指導要領では、高校数学は「数学Ⅰ」「数学A」「数学Ⅱ」「数学B」「数学Ⅲ」「数学C」の6つの科目に分かれています。そのうち、数学Ⅲ・数学Cは選択科目であり、理系を専攻した学生が学ぶものとなっています。
この数学Ⅲの中に、「関数の極限」という単元があり、実はここで「数字を0で割る」という演算に対しての1つの答えが示されているのです。
「極限」とは、「変数を限りなく近づける」という考え方です。例えば、xを3に近づけたときに、「f(x) = x+3」という関数の値は「3+3」で「6」に近づくことが計算によってわかります。これを、「lim」という記号を用いて、
と表すのです。この例だけを考えてみると、「わざわざ、そんなめんどくさい書き方しなくても、x=3のときx+3=6でいいじゃないか」と思う人が多いでしょう。
しかし、この極限の考え方は、変数や関数の値が「0」に近づくときにその真価を発揮するのです。
無料会員登録はこちら
ログインはこちら