「仕事ができない人」に見受けられる8つの要素 論理的思考を養うにはどうしたらいいのか
数学ができなくとも論理的な考え方ができる人はいますが、数学ができるのに論理的な考え方ができない人はそうはいないでしょう。数学を学ぶ意義とはそうした考え方を養うところにあるのだと思います。数学を学ぶことで思考力を鍛えることは、論理的な考えを身につけることにつながるので、社会人として仕事ができる人にとってはとても重要なことといえるわけです。
では、数学ができない人は社会で役に立たない人なのでしょうか。ネット上でも「数学は社会に出て役に立たないが、数学ができない人は社会で役に立たない」というような言葉を見かけたことがありますが、それは違うと思います。
数学ができな人の8つの特徴
「社会で役に立たない」人と聞くと「国家の維持・発展に寄与していない」私のような人間がまっさきに思い浮かんでしまいますし、世の中に貢献しない人は生きる価値がないかのような印象を抱かせてしまいます。ただ「数学ができない人は仕事ができない可能性が高い」と言い換えればおおむね賛同できます。それはなぜかをお答えするには、数学ができない人とはどういった人かを考えてみるとわかりやすいと思います。
数多くの生徒を見てきた私だからこそ言い切れる、数学ができない人の特徴は8つあります。それは、
2. 「やり方」だけを覚える
3. 「なぜそうなるか」を考えない
4. 工夫をしない
5. ミスに気づけない
6 大局的に見られない
7 帰納法的思考をしない
8 条件を見落とす
です。1つひとつの説明は割愛させていただきますが、数学が不得意、できない、苦手という人の多くはこの8つのうち複数に当てはまることが多くあります。これってまさに仕事ができない人の条件そのものではないでしょうか。
ではどうすれば数学脳になれるのでしょうか。それは非常に簡単なことです。上記の8つのことの「逆」を意識することです。例えば、「定義をおろそかにしない」。
定義とはとても大切なものです。数学において定義は物事の本質とも言えるもので、本質を理解するということは問題を解く上でのスタート地点とも言えます。そこがしっかりしていないのは、土台がグラグラな状態で建物を建てるようなものです。
東大の伝説の入試問題と言われる「円周率が 3.05 より大きいことを証明せよ」という 2003年の問題があります。これは定義がどれだけ大切かを明確に示した、非常にいい問題と言えるでしょう。この問題の正答率はそれほど高くなかったそうです。
東大の入試では満点を取る必要がないため、難易度を瞬時に判断する能力も問われます。多くの受験生がこの問題を「捨て問」と判断した結果、得点率が低かったのでしょう。しかし、この問題は「円周率」の定義(直径に対する円周の割合)さえ意識すれば簡単に解ける問題なのです。
無料会員登録はこちら
ログインはこちら