日本の天才数学者、谷山豊が得た奇跡の着想

「数学の大統一」に日本人が大貢献していた

エドワード・フレンケル教授の講義は佳境に入ってきた
1955 年、日光で開かれた数論の国際学会で日本の数学者谷山豊が得た着想は、「奇跡」とも言えるひらめきだった。その着想とは、非常に複雑な数論の問題を、調和解析というまったく別の数学を使って解くことができるというもの。この「谷村・志村・ヴェイユ」予想が、後に数学史上最大の難問と言われた「フェルマーの最終定理」の解決につながってくる。そのドラマチックな展開をフレンケル教授の著書『数学の大統一に挑む』の訳者である青木薫が読み解く。
 
第1回 「究極の数学」は驚くほどエレガントで力強い
第2回 天才数学者が決闘死前夜に残した奇跡のメモ
第4回 物理学者は、数学者の肩に乗った小人なのか

 

NHK Eテレ『数学ミステリー白熱教室』の第3回(11月27日23時放送)は、「夭折した日本の数学者が、数学の大統一に果たした役割」だった。ラングランズ・プログラムの核心に迫り、「数論と調和解析の不思議なつながり」を探ることがテーマだった。フレンケルは、簡単な例を見てもらうことで、数学の異なる分野がつながるとはどういうことなのかを感じ取ってほしいという。

そんなつながりを示すうえで重要な役割を演じたのが、かの有名な「フェルマーの最終定理」だ。その「定理」は、一見するとピタゴラスの定理を素直に拡張しただけのようのようにみえる。ところが、なんのことはなさそうなその問題が、実に350年以上ものあいだ、未証明のままにとどまったのである。

フェルマーの最終定理

未証明なのだから「定理」ではなく、「予想」と呼ばれるべきだったろう。しかし、1637年頃にこの問題について考えたピエール・ド・フェルマーは、証明を発見したと考え、「真におどろくべき証明を見つけたが、余白が狭すぎるので、ここに書くことはできない」という有名な台詞を残して死んでしまった。

上記の式でn が3以上の自然数の場合X、Y、Zを満たす整数解はない」がフェルマーの最終定理

多くの数学者を魅了し、多彩なエピソードに彩られた「フェルマーの最終定理」は、もともと数論の未解決問題だった。ところが1985年のこと、「フェルマーの最終定理」は、「志村・谷山・ヴェイユ予想」という別の予想の特殊ケースであることが示されたのである。つまり、「志村・谷山・ヴェイユ予想」が証明できれば、自動的にフェルマーの最終定理を証明したことになるのだ。

次ページ「志村・谷山・ヴェイユ予想」とは?
関連記事
Topic Board トピックボード
人気連載
Trend Library トレンドライブラリー
  • コメント
  • facebook
0/400

コメント投稿に関する規則(ガイドライン)を遵守し、内容に責任をもってご投稿ください。

Access Ranking
  • 1時間
  • 24時間
  • 週間
  • 月間
  • いいね!

※過去48時間以内の記事が対象

※過去1ヵ月以内の記事が対象

※過去1ヵ月以内の記事が対象

※過去1ヵ月以内の記事が対象

※週間いいね数のランキングです。

トレンドウォッチ
情報の裏側<br>ググるだけではカモられる

スマホの登場で簡単に情報を手に入れられるようになった。一方、エセ情報も氾濫。情報洪水の舞台裏と、荒波を泳ぎ切る実践スキルを紹介する。佐藤優氏、池上彰氏…情報賢者が登場。